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Резюме 

У статті розглянуто здатність класифікаторів машинного навчання на 
основі штучного інтелекту, навчених на анонімних даних банківських транза-
кцій, ефективно виявляти шахрайські операції. У дослідженні перевірено гі-
потезу H1: щонайменше один класифікатор має площу під кривою ROC-
кривою (AUC) > 0,50 противагу нульовій гіпотезі H0, згідно з якою AUC най-
кращої моделі ≤ 0,50. Використовуючи анонімний набір даних, наданий ко-
мерційним банком зі США, оцінено широкий спектр класифікаторів, зокрема 
ансамблеві методи на основі дерев рішень, ймовірнісні, методи на основі 
відстані, лінійні та маржинальні алгоритми навчання, а також нейронну ме-
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режу із застосуванням програмного забезпечення Orange Data Mining. Оці-
нювання моделей здійснювалося за допомогою стратифікованої 10-кратної 
перехресної перевірки. Кілька моделей досягли значень AUC > 0,50, а мето-
ди деревного бустингу забезпечили найкращий баланс між виявленням шах-
райства та обмеженням кількості хибнопозитивних спрацьовувань. Лінійні 
базові моделі та методи на основі відстані продемонстрували низьку ефек-
тивність, тоді як SVM забезпечив високий рівень повноти, попри операційно 
дорогий рівень хибнопозитивних спрацьовувань. Загалом отримані резуль-
тати підтверджують H1 і не узгоджуються з H0. Дослідження пропонує про-
зорий, готовий до практичного використання в банківському секторі еталон 
на основі анонімних, реалістичних для виробничого середовища ознак, а за-
пропонований підхід легко відтворюється для налаштування порогів прийн-
яття рішень та систем управління у фінансових установах. 
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Вступ 

Штучний інтелект (ШІ) суттєво вплинув на фінансову та бухгалтерську 
сферу, трансформувавши процеси збору, перевірки, аналізу та виявлення 
аномалій у великих масивах даних. У середовищах фінансової звітності та 
процедур підтвердження, що базуються на штучному інтелекті, вилучення, 
аналіз і валідація даних можуть бути ефективно скоординовані на всіх ета-
пах, що зменшує кількість ручних помилок, підвищує точність і рівень прозо-
рості аудиту. Класифікатори машинного навчання (МН) широко застосову-
ються в банківському секторі для виявлення шахрайства на рівні транзакцій, 
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де патерни шахрайської поведінки є нелінійними, розрідженими та такими, 
що швидко змінюються (Bolton & Hand, 2002; Ngai et al., 2011). 

Мета дослідження – дослідити системи ШІ, навчені на анонімному 
наборі даних, наданому комерційним банком із США (установа анонімізова-
на); оцінити, чи можуть класифікатори ШІ/МН виявляти шахрайські транзак-
ції. Для операціоналізації дослідницької мети використано розширений набір 
моделей (Random Forest, XGBoost, CatBoost, SVM, Neural Networks), оціне-
них із застосуванням стратифікованої перехресної перевірки, а також показ-
ників дискримінації й балансу помилок (AUC, F1, MCC), які є найбільш при-
датними для задач виявлення шахрайства з незбалансованими класами 
(Chicco & Jurman, 2020; Breiman, 2001; Chen & Guestrin, 2016; Cortes & 
Vapnik, 1995; Heaton, 2018).  

Метою дослідження також є оцінка ефективності класифікаторів штуч-
ного інтелекту й машинного навчання (ШІ/МН) у виявленні шахрайських бан-
ківських операцій в умовах, наближених до реального виробничого середо-
вища, з використанням винятково анонімних ознак. 

Отже, основні гіпотези сформульовано так:  

H1 (основна гіпотеза): класифікатори машинного навчання на основі 
штучного інтелекту, навчені на анонімних даних банківських транзакцій, зда-
тні ефективно передбачати, чи є транзакція шахрайською (AUC > 0,50).  

H0 (нульова гіпотеза): класифікатори машинного навчання на основі 
штучного інтелекту, навчені на анонімних даних банківських транзакцій, не 
забезпечують ефективного прогнозування шахрайства, оскільки показник 
AUC найкращої моделі не перевищує 0,50 (AUC ≤ 0,50). 

Ця стаття: а) прозорий еталон оцінювання для порівняльного аналізу 
взаємодоповнювальних типів моделей, б) аналізує порогозалежну операцій-
ну поведінку моделей (AUC, точність прогнозу/повнота (precision / recall), 
MCC, матриці невідповідностей) та в) контекстуалізує емпіричні результати в 
контексті літератури з аналізу шахрайства для з’ясування, коли й чому окре-
мі моделі штучного інтелекту перевершують лінійні або базові моделі на ос-
нові відстані у процесі використання банківських даних (Bolton & Hand, 2002; 
Ngai et al., 2011; Chen & Guestrin, 2016). 

Решта статті організована таким чином: у розділі 2 представлено 
огляд літератури; у розділі 3 описано набір даних і змінні (усі анонімізовані), 
а також методологію та дизайн оцінювання; у розділі 4 наведено результати; 
у розділі 5 – практичні аспекти впровадження; у розділі 6 обговорено резуль-
тати, їхні наслідки для моніторингу банківського шахрайства та напрямки по-
дальших досліджень; у розділі 7 сформульовано висновки.  
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Огляд літератури та постановка проблеми 

У фінансовій та бухгалтерській сферах штучний інтелект широко за-
стосовується для підвищення ефективності й точності, проте результати за-
лежать від організаційної готовності, якості даних та системи врядування. 
Згідно з оглядами впровадження штучного інтелекту, компанії отримують 
відчутні переваги за наявності надійних конвеєрів обробки даних і чіткого на-
гляду, тоді як відсутність цих чинників призводить до низької ефективності та 
дефіциту довіри (Cubric, 2020; Petkov, 2020). Цей контекст є принципово ва-
жливим для задач виявлення банківського шахрайства: навіть потужні алго-
ритми демонструватимуть низьку результативність за низької якості даних, 
слабкого контролю або моніторингу. Організація та готовність даних не є 
другорядними аспектами, оскільки саме вони визначають верхню межу ефе-
ктивності будь-якої моделі, що навчається на банківських транзакціях.  

Десятиліття досліджень показали, що шахрайство з транзакціями має 
три властивості, які ускладнюють прогнозування, а саме: а) суттєвий дисба-
ланс класів (шахрайських транзакцій значно менше, ніж легітимних плате-
жів), б) зміна поведінкових патернів з часом у міру адаптації злочинців та в) 
асиметричність витрат (пропущений випадок шахрайства є дороговартісним, 
однак надмірна кількість хибнопозитивних спрацьовувань також призводить 
до значних витрат) (Bolton & Hand, 2002; Ngai et al., 2011). У зв’язку з цим ви-
явлення шахрайства традиційно формулюється як задача навчання з учите-
лем (класифікація кожної транзакції) у поєднанні з підходами виявлення 
аномалій (ідентифікація нетипової поведінки) (Bolton & Hand, 2002; Ngai et 
al., 2011; Bulatova et al., 2019; Kuryliak et al., 2025). 

Нелінійні ансамблі дерев рішень особливо ефективні у процесі викори-
стання структурованих банківських даних. Random forest (англ. випадковий 
ліс) (Breiman, 2001) моделює взаємодії без складного конструювання ознак, 
а методи градієнтного бустингу (наприклад, XGBoost) ітеративно коригують 
помилки (Chen & Guestrin, 2016). У CatBoost категоріальні змінні обробля-
ються нативно, а перенавчання зменшується завдяки упорядкованому бус-
тингу (ordered boosting), що є особливо корисним, коли ознаки включають 
тип пристрою, канал та тип транзакції. Емпіричні дослідження, що додають 
часові або реляційні сигнали (послідовності або мережі між картками й тор-
говцями), також показують, що гнучкі нелінійні алгоритми перевершують 
прості лінійні моделі або базові алгоритми на основі відстані (van Vlasselaer 
et al., 2015; Jurgovsky et al., 2018). 

Через низьку частоту випадків шахрайства та асиметрію витрат вико-
ристання лише показника точності прогнозу може бути оманливим. У науко-
вій літературі зазначено такі рекомендації: а) використовувати показники 
дискримінації, що не залежать від порогових значень (AUC), б) аналізувати 
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точність прогнозу / повноту, зосереджену на міноритарному класі (шахрайст-
ві), та в) використовувати збалансовані метрики, що враховують усі чотири 
комірки матриці невідповідностей, зокрема MCC (Fawcett, 2006; Saito & 
Rehmsmeier, 2015; Chicco & Jurman, 2020). Також заохочується очевидне 
врахування витрат під час навчання моделей (навчання з урахуванням ви-
трат) та під час встановлення порогів прийняття рішень (Bahnsen et al., 2013; 
Bahnsen et al., 2015). Крім того, Pozzolo et al. (2018) наголошують, що оціню-
вання не повинно ґрунтуватися тільки на статичних випадкових невідповід-
ностях, а має враховувати умови реального середовища (наприклад, часові 
розриви, концептуальний дрейф, затримки верифікації).  

Разом ці висновки забезпечують чітку теоретичну основу для нашого 
дослідження. Ми навчили різноманітний набір класифікаторів ШІ/МН на ано-
німізованих даних банківських транзакцій та оцінили їх за допомогою AUC 
(дискримінація, нечутлива до порогових значень), точності прогнозу / повно-
ти (фокус на міноритарному класі) та MCC (збалансована коректність класи-
фікації) в межах стратифікованої перехресної перевірки.  

Штучний інтелект сприяє виявленню шахрайства та аномальної фінан-
сової активності, що підвищує достовірність і точність фінансової звітності, 
зменшуючи ризики її спотворення внаслідок шахрайських транзакцій, пору-
шення цілісності аудиту та значних викривлень фінансової інформації (Wells, 
2020). Системи виявлення шахрайства на основі машинного навчання здатні 
ідентифікувати аномалії швидше й точніше, ніж використання лише ручних 
процедур перевірки (Ngai et al., 2011). Моделі виявлення та прогнозування 
шахрайства, керовані штучним інтелектом, зокрема Random Forest, Gradient 
Boosting і Neural Networks, довели свою ефективність у виявленні поведінки 
з високим рівнем ризику в банківському середовищі, посилюючи системи 
внутрішнього контролю та забезпечуючи надійність фінансової звітності 
(Ryman-Tubb et al., 2018). Відтак оцінювання алгоритмів виявлення шахрайс-
тва безпосередньо сприяє глибшому розумінню того, як штучний інтелект 
може підвищити надійність і достовірність фінансових процесів.  
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Методологія та теоретичні засади 

У дослідженні використано анонімізований набір даних про транзакції, 
наданий комерційним банком із США, який побажав бути невідомим. Базу 
даних надано на умовах дотримання конфіденційності, у зв’язку з чим необ-
роблені транзакційні дані не можуть бути оприлюднені. Перед наданням до-
ступу з набору даних вилучено всю інформацію, що могла б дозволити іден-
тифікацію фізичних осіб. Дослідження зосереджене тільки на виявленні шах-
райства на рівні банківських транзакцій і призначене лише для дослідниць-
ких цілей.  

Цільова змінна (бінарна): Is_Fraud (клас «1» розглядається як позити-
вний / цільовий клас у середовищі Orange) (з англ.: Наявність_Шахрайства). 

Особливості предиктора: Transaction_Amount, Transaction_Type, 
Transaction_Time, Device_Used, Account_Age, Credit_Score, Previous_Fraud (з 
англ.: Сума_транзакції, Тип_транзакції, Час_транзакції, Використаний_пристрій, 
Вік_рахунка, Кредитний_скоринг, Попереднє_шахрайство). 

Типові банківські дані містять суму транзакції, часову мітку (дата й 
час), пристрій або канал здійснення операції, тип транзакції, тривалість існу-
вання й активності рахунка, а також бінарний індикатор попередніх випадків 
шахрайства. 

За допомогою дескрипторів транзакцій, індикаторів каналів, інформації 
про клієнта / його рахунок та простої історії поведінки набір ознак відповідає 
усталеній практиці аналізу шахрайства на рівні транзакцій. Ознаки 
Transaction_Amount та Transaction_Time відображають величину та часові 
закономірності покупок, які часто відрізняють шахрайські операції від легіти-
мних (Whitrow et al., 2009; Jurgovsky et al., 2018). Різні платіжні канали та век-
тори доступу (наприклад, операції з фізичною присутністю картки проти від-
далених транзакцій, банкомат проти онлайн-каналу) неодноразово демон-
стрували відмінні профілі ризику (Bolton & Hand, 2002; Ngai et al., 2011). 
Ознака Account_Age відображає ефекти життєвого циклу рахунка (нові раху-
нки, як правило, мають вищий ризик), а Credit_Score надає узагальнену оцін-
ку кредитного ризику, пов’язаного зі схильністю до шахрайства в операційних 
умовах (Ngai et al., 2011; Bhattacharyya et al., 2001). Ознака Previous_Fraud 
кодує мінімальну історію поведінки: попередньо підтверджені випадки шах-
райства, як показано в літературі, є сильним операційним сигналом і широко 
використовуються в банківських правилах та моделях.  

Цей перелік змінних є виробничо-придатним (не містить персональних 
даних), відповідає законодавчим обмеженням на використання банками та 
відображає ключові виміри, які в літературі пов’язуються з шахрайством: ди-
наміку сум і часу транзакцій, канали та пристрої, зрілість і якість рахунків, а 
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також наявність негативних подій у минулому (Bolton & Hand, 2002; Ngai et 
al., 2011). 

У статистиці ознак середовища Orange відсутні пропущені значення. 
Часові мітки транзакцій охоплюють вісім тижнів, починаючи з січня, а клас 
«1» відповідає шахрайству. Це дозволяє навчати моделі без імпутації даних і 
застосовувати коректні схеми оцінювання за умов дисбалансу класів.  

Усі експерименти проведені в середовищі Orange Data Mining, візуаль-
ному аналітичному інструменті для побудови та оцінювання моделей ма-
шинного навчання (Demšar et al., 2013). Панель навчання охоплювала: 

• Лінійні базові моделі: Ridge Regression та Lasso Regression (на-
вмисно збережені як лінійні орієнтири для перевірки лінійної роз-
дільності та формування консервативних базових моделей). 

• Методи на основі відстані: k-Nearest Neighbors (kNN). 

• Методи на основі маржі: Support Vector Machine (SVM). 

• Ймовірнісні моделі: Naive Bayes. 

• Ансамблеві методи: Random Forest, AdaBoost. 

• Методи градієнтного бустингу: XGBoost, CatBoost. 

• Нейронна модель: нейронна мережа. 

• Онлайн-лінійна модель: Stochastic Gradient Descent (SGD). 

Кілька попередніх досліджень показали, що ансамблі дерев рішень і 
методи бустингу добре працюють зі структурованими банківськими даними 
(Breiman, 2001; Chen & Guestrin, 2016), а лінійні моделі слугують інтерпрето-
ваними, консервативними базовими орієнтирами (Hoerl & Kennard, 1970; 
Tibshirani, 1996). Використання SVM, kNN, Naive Bayes і нейронних мереж 
доповнює відповідно маржинальні (margin-based), прикладо-орієнтовані 
(instance-based), ймовірнісні (probabilistic) та глибинні (deep learning) підходи 
до навчання (Cortes & Vapnik, 1995; Cover & Hart, 1967; Mitchell, 1997; 
Heaton, 2018).  

У цьому дослідженні проведено оцінювання ефективності різних моде-
лей машинного навчання. Обрані моделі представляють чотири основні ка-
тегорії методів прогнозного навчання, що зазвичай застосовуються в аналі-
тиці шахрайства: а) навчання на основі відстані (kNN), б) деревні ансамблеві 
методи (Random Forest, XGBoost, CatBoost, AdaBoost), в) ймовірнісні моделі 
(Naive Bayes) й г) лінійні та нелінійні дискримінаційні моделі навчання (SVM, 
Logistic / Ridge / Lasso Regression, Stochastic Gradient Descent, Neural 
Networks).  
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Згідно з попередніми науковими дослідженнями, шахрайські патерни 
часто є нелінійними, розрідженими та динамічними, що зумовлює необхід-
ність порівняння простих інтерпретованих моделей із більш складними ан-
самблевими моделями на основі штучного інтелекту (Ngai et al., 2011). Зок-
рема, методи градієнтного бустингу на основі дерев рішень демонструють 
високу ефективність у роботі із структурованими фінансовими даними, за-
вдяки здатності моделювати складні взаємодії між характеристиками та фо-
рмувати нелінійні межі класів (Chen & Guestrin, 2016).  

Передові моделі штучного інтелекту також порівнювалися з класични-
ми моделями, зокрема Logistic Regression, Naive Bayes і kNN, що дало змогу 
безпосередньо пов’язати будь-яке спостережуване покращення саме з вико-
ристанням передових моделей ШІ, а не з упередженістю набору даних. Від-
повідно до цього підходу, основною метою дослідження є демонстрація цін-
ності штучного інтелекту в сучасних системах виявлення шахрайства шля-
хом порівняння прогнозних алгоритмів на основі ШІ з традиційними статис-
тичними і правило-орієнтованими методами. 

Для оцінювання використано віджет «Test & Score» (з англ.: «Тест і 
оцінка») у програмному середовищі Orange з такими налаштуваннями:  

• Протокол оцінювання: застосовано стратифіковану 10-кратну пе-
рехресну перевірку, за якої параметр stratified забезпечує збере-
ження пропорцій класів у кожному фолді за можливості, що дозво-
ляє отримати надійні оцінки з низькою дисперсією в умовах дисба-
лансу класів. 

• Цільовий клас: як позитивний визначено клас «1», що є принци-
пово важливим для коректного обчислення покласових метрик і 
подальшого PR- та ROC-аналізу. 

• Вихідні дані для діагностики: для кожної моделі сформовано по-
казники ефективності та матриці невідповідностей (за допомогою 
віджета Confusion Matrix) з метою детального аналізу характеру 
класифікаційних помилок, зокрема співвідношення хибних-
позитивних і хибних-негативних результатів. 

Ефективність оцінювалася на рівні дискримінаційної здатності з вико-
ристанням перехресної перевірки, при цьому основним критерієм був показ-
ник AUC. 

В операційному сенсі ефективність інтерпретувалася як перевищення 
середнього значення AUC, отриманого за результатами перехресної переві-
рки, порогового рівня 0,50 принаймні для однієї моделі. Оцінювання здійсню-
валося у поєднанні з додатковими діагностичними показниками (точність 
прогнозу / повнота, F1, MCC та матриці невідповідностей) з метою виклю-
чення дегенеративних режимів роботи моделей. Це правило було визначене 
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заздалегідь і не передбачало апріорного виділення будь-якої конкретної мо-
делі. 

Віджет Test & Score у середовищі Orange надає стандартний набір по-
казників якості класифікації. Нижче наведено метрики, використані в дослі-
дженні, та їхні офіційні визначення:  

• AUC (Area Under the ROC Curve, площа під ROC-кривою): імові-
рність того, що класифікатор присвоїть випадково вибраному пози-
тивному прикладу вищий ранг, ніж випадково вибраному негатив-
ному; обчислюється у віджеті Test & Score та додатково аналізу-
ється за допомогою віджета ROC Analysis. 

• CA (Classification Accuracy), точність класифікації: частка пра-
вильно класифікованих прикладів серед усіх класів. 

• Precision (точність прогнозу): частка істинно позитивних випадків 
серед усіх прикладів, передбачених як позитивні. 

• Recall (Sensitivity), повнота / чутливість: частка істинно позитив-
них випадків серед усіх фактичних позитивних прикладів. 

• F1-score (F1-міра): гармонійне середнє показників precision (точ-
ності прогнозу) та recall (повноти). 

• MCC (Matthews Correlation Coefficient, коефіцієнт кореляції Ме-
тьюза): збалансований кореляційний індекс, що враховує всі чоти-
ри комірки матриці невідповідностей. 

• Матриця невідповідностей (Confusion Matrix, діагностична): 
таблиця співвідношення передбачених і фактичних класів для візу-
алізації хибно позитивних та хибно негативних результатів, а також 
помилок за класами. 

Оскільки шахрайство є рідкісним явищем, а витрати класифікаційних 
помилок – асиметричними, використання лише показника точності класифі-
кації може бути оманливим. Застосування AUC, precision / recall і F1, а також 
коефіцієнта MCC відповідає усталеним, найкращим практикам оцінювання 
моделей у задачах із незбалансованими класами (Fawcett, 2006; Saito & 
Rehmsmeier, 2015; Chicco & Jurman, 2020). 
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Результати дослідження 

Для оцінювання прогностичної ефективності кількох моделей машин-
ного навчання з цільовою змінною Is_Fraud застосовано стратифіковану 10-
кратну перехресну перевірку. Серед показників оцінювання використовува-
лися AUC (Fawcett, 2006), точність класифікації, точність прогнозу, повнота 
(Saito & Rehmsmeier, 2015), F1-score та коефіцієнт кореляції Метьюза (MCC), 
який, враховуючи всі компоненти матриці невідповідностей, забезпечує на-
дійну оцінку ефективності класифікації в умовах дисбалансу класів (Chicco & 
Jurman, 2020). 

 

 

Таблиця 1 

Підсумок оцінювання моделей 

Model AUC Accuracy F1 Precision Recall MCC 
CatBoost 0,737 0,733 0,345 0,566 0,248 0,236 
Naive Bayes 0,740 0,729 0,283 0,567 0,188 0,202 
Ridge Regression 0,567 0,716 0,000 0,000 0,000 0,000 
Lasso Regression 0,516 0,716 0,000 0,000 0,000 0,000 
XGBoost 0,703 0,704 0,368 0,467 0,303 0,193 
Random Forest 0,642 0,690 0,338 0,428 0,279 0,152 
kNN 0,510 0,657 0,198 0,294 0,149 0,010 
AdaBoost 0,572 0,646 0,391 0,382 0,401 0,142 
Neural Network 0,500 0,543 0,332 0,284 0,400 0,000 
Stochastic Gradient 
Descent 0,500 0,500 0,362 0,284 0,500 0,000 

SVM 0,499 0,329 0,431 0,284 0,897 0,001 

Джерело: розраховано авторами. 
Примітка. AUC – площа під ROC-кривою; Accuracy – точність класифікації; F1; 
Precision – точність прогнозу; Recall – повнота; MCC – коефіцієнт кореляції Метьюза. 
Оцінювання виконано за допомогою стратифікованої 10-кратної перехресної перевірки.  

 

 

На рис. 1 наведено ROC-криві для всіх класифікаторів, де шахрайство 
визначено як позитивний клас. Naive Bayes і CatBoost формують верхню оги-
наючу криву; за ними з незначним відставанням слідує XGBoost, водночас 
Random Forest демонструє слабші результати, що узгоджується з ранжуван-
ням за AUC у зведенні оцінювання моделей. kNN та AdaBoost, базові моделі, 
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розташовані ближче до діагоналі 45°, а лінійні моделі та неналаштована 
нейронна мережа фактично слідують цій діагоналі. Це відповідає значенням 
AUC, близьким до 0,50. Хоча Naive Bayes має дещо вищий AUC порівняно з 
CatBoost, показник MCC є нижчим через меншу повноту та менш сприятли-
вий операційний баланс, що відображається у формі ROC-кривої та підтвер-
джується матрицями невідповідностей. Отримані ROC-профілі узгоджуються 
з попередніми результатами та підтверджують доцільність поєднання ROC-
аналізу з показниками precision–recall і MCC у задачах із незбалансованими 
класами (Fawcett, 2006; Saito & Rehmsmeier, 2015).  

 

 

Рисунок 1  

ROC-криві моделей класифікаторів 

 

Джерело: розроблено авторами. 
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CatBoost (модель з найкращими показниками) 

CatBoost продемонстрував найбільш збалансовану ефективність 
(AUC = 0,737; MCC = 0,236). Матриця невідповідностей засвідчила, що мо-
дель правильно виявила 704 випадки шахрайства (істинно позитивні), пропу-
стила 2134 випадки (хибнонегативні) та помилково класифікувала 540 тран-
закцій як шахрайські (хибнопозитивні). Модель ефективно ідентифікувала 
шахрайські операції, водночас утримуючи кількість хибнопозитивних резуль-
татів на контрольованому рівні, що робить її найбільш надійною та операцій-
но придатною серед розглянутих моделей. Упорядкований бустинг (ordered 
boosting) та нативна підтримка категоріальних ознак у CatBoost сприяють 
зниженню перенавчання під час роботи зі структурованими фінансовими да-
ними та покращують здатність моделі до узагальнення.  

Naive Bayes 

Naive Bayes продемонстрував високу точність прогнозу (0,567), проте 
дуже низьку повноту (0,188). Матриця невідповідностей показала 534 вияв-
лені випадки шахрайства (TP), 2 304 пропущені (FN) та 408 хибнопозитивних 
спрацювань (FP), що вказує на обережний характер виявлення шахрайства. 
Така поведінка зумовлена сильним припущенням умовної незалежності 
ознак, яке рідко відповідає динаміці фінансового шахрайства (Mitchell, 1997). 

Ridge Regression та Lasso Regression 

Ridge Regression і Lasso Regression класифікували всі транзакції як 
нешахрайські, що призвело до значень F1 = 0 та MCC = 0. Матриці невідпо-
відностей містили 0 TP, 2838 FN, 0 FP та 7162 TN. Ці лінійні моделі не здатні 
виявляти нелінійні патерни шахрайства, характерні для даних фінансової 
поведінки (Hoerl & Kennard, 1970; Tibshirani, 1996). 

XGBoost 

Баланс між виявленням шахрайства та кількістю хибних спрацювань 
був кращим у XGBoost (AUC = 0,703; MCC = 0,193). Матриця невідповіднос-
тей показала 861 виявлений випадок шахрайства (TP), 1977 пропущених 
(FN) та 982 хибнопозитивні спрацювання (FP), що є кращим компромісом, ніж 
Random Forest. Це узгоджується зі здатністю градієнтного бустингу поступо-
во усувати помилки (Chen & Guestrin, 2016). 

Random Forest 

Помірну ефективність продемонстрував Random Forest (AUC = 0,642; 
MCC = 0,152). Матриця невідповідностей показала 779 виявлених випадків 
шахрайства (TP), 2059 пропущених (FN) та 1061 хибнопозитивне спрацю-
вання щодо легітимних транзакцій (FP). Це узгоджується з консервативним 
характером моделі, тобто кількість хибнопозитивних результатів нижча за 
рахунок пропуску частини шахрайських операцій (Breiman, 2001). 
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k-Nearest Neighbors (kNN) 

kNN продемонстрував дуже низьку повноту (0,149) та слабку загальну 
дискримінаційну здатність (MCC = 0,010). Матриця невідповідностей засвід-
чила 422 правильно виявлені випадки шахрайства (TP), 2416 шахрайських 
транзакцій, помилково класифікованих як легітимні (FN), та 1011 легітимних 
транзакцій, хибно позначених як шахрайські (FP). Це свідчить про сильну 
упередженість моделі до домінантного нешахрайського класу, що є очікува-
ним, коли подібність на основі відстані не відображає поведінкові патерни 
шахрайства (Cover & Hart, 1967). 

AdaBoost 

AdaBoost продемонстрував середній рівень ефективності (F1 = 0,391). 
Матриця невідповідностей показала 1138 виявлених випадків шахрайства 
(TP), 1 700 пропущених (FN) та 1843 хибнопозитивні спрацювання (FP), що 
вказує на підвищену чутливість до виявлення шахрайства за рахунок зрос-
тання кількості хибнопозитивних результатів і, відповідно, нижчу точність 
прогнозу (Freund & Schapire, 1997). 

Neural Network (Нейронна мережа) 

Дискримінаційна здатність нейронної мережі виявилась слабкою 
(AUC = 0,500; MCC = 0,000). Матриця невідповідностей показала 1136 пра-
вильно виявлених випадків шахрайства (TP), 1702 пропущені (FN) та 2864 
легітимні транзакції, помилково позначені як шахрайські (FP), що підтвер-
джує низьку ефективність моделі. Це узгоджується з відомими обмеженнями 
недостатньо налаштованих нейронних моделей на табличних даних (Heaton, 
2018). 

Stochastic Gradient Descent (SGD) 

SGD продемонстрував нестабільну та слабку класифікаційну здатність 
(AUC = 0,500; MCC = 0,000). Це свідчить про труднощі у формуванні розді-
лювальних меж у цьому наборі даних (Bottou, 2010). 

Support Vector Machine (SVM)  

Модель SVM досягла високої повноти (0,897), правильно виявивши 
2 545 випадків шахрайства (TP), однак супроводжувалася 6418 хибнопозити-
вними спрацюваннями (FP) та 293 пропущеними випадками (FN). Точність 
прогнозу залишалася низькою (0,284) (Saito & Rehmsmeier, 2015). Такий дис-
баланс робить SVM непридатною для практичного використання в реальних 
системах скринінгу шахрайства, де вартість хибних тривог є високою (Cortes 
& Vapnik, 1995). 

CatBoost визначено як найсильнішу модель, що забезпечує найкращий 
баланс між здатністю виявляти шахрайство та контролювати хибнопозитивні 
спрацьовування, що робить її найбільш придатним кандидатом для реальних 



 Спиридон  Д .  Лампропулос ,  Георг і ос  Л .  Танасас ,  Георг ія  Н .  К онтогеорга  

Виявлення шахрайства в банківських транзакціях з використанням  
штучного інтелекту та анонімізованих даних 

 

 

690 

систем моніторингу та втручання у випадках фінансового шахрайства. Оскі-
льки кілька моделей досягли значень AUC (Fawcett, 2006), що суттєво пере-
вищують 0,50 (зокрема, Naive Bayes = 0,740; CatBoost = 0,737), отримані ре-
зультати підтверджують H1 і не узгоджуються з H0 для цього набору даних. 
CatBoost ідентифіковано як «найкращу загалом» модель на основі збалансо-
ваної ефективності (найвище значення MCC = 0,236) у поєднанні з конкурен-
тоспроможним AUC. Таким чином, основну гіпотезу H1 прийнято, а нульову 
гіпотезу H0 відхилено. 

 

 

Практичне застосування 

Емпіричні результати можуть бути інтерпретовані як основа робочого 
процесу комерційної системи скринінгу шахрайства в банківських установах. 
По-перше, моделі, що демонструють надійну дискримінаційну здатність і 
збалансовану поведінку в разі виявлення помилок (відображену показниками 
AUC у поєднанні з precision/recall та MCC), є придатними для використання 
як первинний рівень оцінювання транзакцій і формування показника ризику 
шахрайства для кожної транзакції. По-друге, банки можуть встановлювати та 
періодично переглядати порогові значення прийняття рішень з урахуванням 
операційних можливостей і асиметричних витрат (зокрема, вартості пропу-
щеного випадку шахрайства порівняно з вартістю розслідування хибного 
спрацювання) (He & Garcia, 2009; Bahnsen et al., 2015). По-третє, модель має 
бути інтегрована в систему управлінського контролю (governance), що пе-
редбачає:  

• регулярний моніторинг показників ефективності для виявлення їх-
ньої деградації в міру еволюції шахрайських патернів (Pozzolo et 
al., 2018);  

• планове перенавчання моделі з використанням нещодавно отри-
маних маркованих результатів за їх наявності;  

• чітко визначені протоколи ескалації, які забезпечують своєчасний 
розгляд випадків з високим рівнем ризику, а транзакції з низьким 
рівнем ризику обробляються у штатному режимі.  

Незважаючи на те, що дані є анонімізованими, практичне впроваджен-
ня таких моделей у банківському середовищі все одно потребує належної 
документації, перевірки, постійного моніторингу та забезпечення аудиту від-
повідно до вимог управління модельними ризиками (Division of Banking 
Supervision and Regulation, 2011), що має підтримуватися ефективною сис-
темою управління ризиковими даними та практиками звітності (Basel 
Committee on Banking Supervision, 2013). 
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Обговорення 

У дослідженні проаналізовано чотири сімейства загальних класифіка-
торів, які широко застосовуються в аналітиці шахрайства: а) методи на осно-
ві відстані (k-nearest neighbors), б) ансамблеві методи на основі дерев рі-
шень (Random Forest, XGBoost, CatBoost, AdaBoost), в) ймовірнісні моделі 
(Naive Bayes) та г) лінійні та маржинальні дискримінаційні моделі 
(Ridge/Lasso, Stochastic Gradient Descent, Support Vector Machines), а також 
ґ) нейронну мережу. Попередні дослідження свідчать, що патерни шахрайст-
ва в транзакційних даних є нелінійними та змінюються з часом, що зумовлює 
доцільність порівняння гнучких ансамблевих методів із простими базовими 
моделями (Ngai et al., 2011). Дерева градієнтного бустингу часто демонстру-
ють високу ефективність на структурованих банківських даних, оскільки зда-
тні моделювати взаємодію ознак та складні межі прийняття рішень (Chen & 
Guestrin, 2016). 

Отримані результати узгоджуються з H1 і не узгоджуються з H0, оскі-
льки декілька класифікаторів демонструють рівень дискримінації, суттєво 
вищий за 0,5 за показником AUC на цьому наборі даних. 

Серед сімейств моделей деревні методи градієнтного бустингу забез-
печили найвищий рівень дискримінаційної здатності та збалансованості по-
милок на анонімних даних банківських транзакцій. Найвищі значення AUC 
отримано для Naive Bayes та CatBoost (AUC ≈ 0,74 для обох моделей), вод-
ночас CatBoost продемонстрував найвищий показник MCC (≈ 0,24) і най-
більш збалансоване представлення помилок. Матриця невідповідностей 
CatBoost засвідчила 704 істинно позитивні результати (TP), 2134 хибнонега-
тивні (FN) та 540 хибнопозитивні (FP), що вказує на обережний підхід до ма-
ркування шахрайства за умови стриманої кількості хибних спрацьовувань 
(Chicco & Jurman, 2020).  

Хоча Naive Bayes демонструє дещо вищий AUC, ніж CatBoost, його не-
достатня повнота зумовлює суттєво нижче значення MCC, що свідчить про 
нестабільний загальний баланс помилок на незбалансованих даних (Chicco 
& Jurman, 2020). З огляду на це CatBoost визначено як найкращу модель за 
сукупною ефективністю. 

XGBoost (AUC ≈ 0,70; MCC ≈ 0,19) продемонстрував подібні результа-
ти з 861 TP, 1977 FN та 982 FP, що узгоджується з очікуваною ефективністю 
градієнтного бустингу на структурованих фінансових даних (Chen & Guestrin, 
2016). Random Forest (AUC ≈ 0,64; MCC ≈ 0,15) показав помірну ефективність 
із 779 TP, 2059 FN та 1061 FP і був здатний враховувати взаємодію ознак, 
хоча й у консервативніших рамках (Breiman, 2001).  
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Naive Bayes, незважаючи на високий показник AUC, продемонстрував 
високу точність прогнозу, але низьку повноту (precision ≈ 0,57; recall ≈ 0,19) з 
534 істинно позитивними результатами (TP), 2304 хибнонегативними (FN) та 
408 хибнопозитивними (FP). Це є типовим проявом припущення умовної не-
залежності ознак у присутності складних і взаємозалежних патернів фінан-
сового шахрайства (Mitchell, 1997).  

Порівняно з базовими моделями з відмінними характеристиками, SVM 
досяг високої повноти (≈ 0,90), однак за операційно неприйнятного рівня хи-
бнопозитивних спрацювань (2545 TP, 293 FN та 6418 FP), що відображає ві-
дому чутливість цієї моделі до дисбалансу класів і вибору порогових значень 
(Cortes & Vapnik, 1995). kNN продемонстрував низьку повноту (≈ 0,15) з 
422 TP, 2416 FN та 1011 FP, що є очікуваним у випадках, коли відстань між 
спостережуваними значеннями не відображає подібності поведінкових пате-
рнів (Cover & Hart, 1967). Нейронна мережа та SGD продемонстрували ефе-
ктивність на рівні випадкового вгадування (AUC = 0,50) (Hoerl & Kennard, 
1970; Tibshirani, 1996; Heaton, 2018; Bottou, 2010), тоді як Ridge та Lasso де-
градували до класифікації класу більшості (0 TP, 2838 FN, 0 FP), що додат-
ково вказує на нелінійний характер патернів шахрайства. 

У випадку категоріальних каналів, типів пристроїв і гетерогенних пове-
дінкових патернів банківських транзакцій регульований деревний бустинг 
продемонстрував найнадійніші операційні результати, а лінійні чи методи на 
основі відстані або недостатньо виявляли шахрайство, або генерували над-
мірну кількість хибнопозитивних спрацьовувань.  

Оскільки шахрайство є рідкісним явищем, а витрати класифікаційних 
помилок – асиметричними, використання тільки одного показника точності 
класифікації може виявитись оманливим. У цьому контексті доцільно засто-
совувати показники AUC, точності прогнозу / повноти, F1 та MCC (Fawcett, 
2006; Saito & Rehmsmeier, 2015; Chicco & Jurman, 2020). Зазначені закономі-
рності є типовими для задач виявлення шахрайства: Naive Bayes забезпечує 
високу точність прогнозу (тобто невелику кількість хибних тривог), однак за-
лишає непоміченими значну кількість шахрайських операцій; SVM досягає 
високої повноти, існує надзвичайно висока частка хибнопозитивних спрацьо-
вувань. Натомість моделі деревного бустингу демонструють збалансовану 
поведінку помилок, яку можна додатково налаштовувати шляхом зміни поро-
гів прийняття рішень щодо структури витрат, відповідно до вимог банку 
(Chen & Guestrin, 2016). Порогові значення спрацювання в банківських сис-
темах узгоджуються з асиметрією витрат. Водночас налаштування порогів 
або навчання з урахуванням витрат дозволяють балансувати між точністю 
прогнозу та його повнотою (He & Garcia, 2009; Bahnsen et al., 2015).  
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Висновки 

У дослідженні оцінено широкий спектр класифікаторів AI/ML на аноні-
мному наборі даних банківських транзакцій, використовуючи стратифіковану 
10-кратну перехресну перевірку та метрики оцінювання, оптимальні для ви-
явлення шахрайства за умов дисбалансу класів (AUC, точність прогнозу / 
повнота, F1, MCC). Регульовані деревні методи бустингу продемонстрували 
найкращі операційні профілі: CatBoost досяг AUC = 0,737 і MCC = 0,236 за 
помірного рівня хибнопозитивних спрацьовувань (TP = 704, FN = 2134, 
FP = 540). XGBoost також проявив хорошу ефективність (AUC = 0,703, 
MCC = 0,193, TP = 861, FN = 1977, FP = 982). Naive Bayes отримав найвище 
значення AUC (0,740) за мінімальної повноти (0,188) (TP = 534, FN = 2304, 
FP = 408), що відповідає його консервативній природі з пропуском значної 
частини шахрайських операцій. Лінійні базові моделі Ridge/Lasso деградува-
ли до класифікації класу більшості (TP = 0, FN = 2838, FP = 0), а SVM досяг 
дуже високої повноти (0,897) ціною 6418 хибнопозитивних спрацьовувань. 

Такі результати підтверджують H1 («класифікатори машинного на-
вчання, навчені на анонімних даних банківських транзакцій, здатні ефектив-
но передбачати шахрайство, AUC > 0,50») та не узгоджуються з H0 («ефек-
тивність найкращої моделі не перевищує AUC ≤ 0,50»). Отримані результати 
узгоджуються з попередніми дослідженнями, які свідчать, що дерева градіє-
нтного бустингу доволі ефективно працюють зі структурованими фінансови-
ми даними, а коефіцієнт MCC є інформативним узагальнювальним показни-
ком за наявності дисбалансу класів (Breiman, 2001; Chen & Guestrin, 2016; 
Chicco & Jurman, 2020). 

На цьому наборі даних дерева градієнтного бустингу (CatBoost / 
XGBoost) забезпечують достатній баланс між виявленням шахрайства та ко-
нтролем обсягу хибних спрацьовувань. Зокрема, структура помилок у матри-
ці невідповідностей CatBoost (TP = 704; FP = 540) свідчить про меншу кіль-
кість необґрунтованих ескалацій порівняно з моделлю SVM, яка, попри висо-
ку повноту, характеризується надмірною кількістю хибнопозитивних спра-
цьовувань (FP = 6418). Банки можуть обирати моделі деревного бустингу як 
детектори першої лінії та налаштовувати порогові значення відповідно до 
власних співвідношень витрат (відносної вартості кожного хибного спрацьо-
вування та вартості пропущеного випадку шахрайства). Такий підхід узго-
джується з найкращими практиками у сфері незбалансованої класифікації, 
де порогові значення або навчання з урахуванням витрат адаптуються до 
обмежень бізнесу (He & Garcia, 2009; Bahnsen et al., 2015). 

Водночас вибір моделі є лише одним із чинників. Для успішного впро-
вадження критично важливими є якісні конвеєри обробки даних, постійний 
моніторинг та належний нагляд, які малоефективні для продуктивного бан-
ківського застосування (Cubric, 2020). Фінансовим установам рекомендується 
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впроваджувати: а) періодичне калібрування порогових значень відповідно до 
поточного рівня шахрайської активності, б) моніторинг змін у даних та цикли 
перенавчання для реагування на нові патерни шахрайської поведінки, а та-
кож в) чітко визначені шляхи ескалації, що забезпечать зосередження уваги 
аналітиків на найбільш значущих сигналах про ризик (Bolton & Hand, 2002; 
Pozzolo et al., 2018).  

З огляду на це сучасні моделі деревного бустингу з постфактумним 
налаштуванням порогів є одними з найпереконливіших емпіричних обґрунту-
вань для їх практичного використання як високоефективної базової моделі в 
банках. Подібний підхід дозволяє посилити превентивні механізми контролю 
і зменшити фінансові втрати, водночас зберігши навантаження на аналітиків 
на контрольованому рівні (Chen & Guestrin, 2016). 

Що стосується обмежень дослідження, транзакційні дані охоплюють 
лише перші шість тижнів 2025 р. (від початку січня до середини лютого). 
Отримані результати можуть змінюватися під впливом сезонних факторів чи 
появи нових схем шахрайства. Набір даних походить з одного банку, розта-
шованого у США, тому зовнішня валідність результатів може підвищитись у 
разі реплікації дослідження в кількох фінансових установах. У межах обме-
женого набору даних були доступні лише транзакційні та базові характерис-
тики рахунків. Мережеві й послідовні ознаки (зокрема «продавець – картка» 
та динаміка сесій) зазвичай забезпечують додаткове підвищення ефективно-
сті виявлення шахрайства (van Vlasselaer et al., 2015; Jurgovsky et al., 2018). 

Стійкість моделей є предметом подальших досліджень. Перевірка з 
урахуванням часової впорядкованості даних і послідовні оновлення моделей 
дозволили б кількісно оцінити ефективність їхньої адаптації до постійної 
еволюції патернів шахрайства (Pozzolo et al., 2018). По-друге, навчання та 
калібрування моделей з урахуванням витрат, залежних від індивідуальних 
випадків, а також матриць збитків окремих банків дозволило б формувати 
прогнози, що ґрунтуються не лише на статистичній відповідності, а й на опе-
раційній економіці (Bahnsen et al., 2015). Зрештою, зовнішня перевірка на рі-
зних часових інтервалах, у різних географічних контекстах і фінансових уста-
новах є необхідною для оцінювання можливості узагальнення результатів та 
виявлення потенційних упереджень, специфічних для окремих наборів даних. 

Це дослідження пропонує чіткий, практико-орієнтований підхід до ви-
явлення шахрайства у банківський транзакціях на основі анонімних транзак-
ційних даних. У працях здійснено порівняльну оцінку різних моделей-
класифікаторів у межах стратифікованої перехресної перевірки та продемо-
нстровано здатність деревного (градієнтного) бустингу забезпечити ефекти-
вну дискримінацію на основі анонімних, реалістичних для виробничого сере-
довища характеристик, а лінійні та методи на основі відстані є недостатньо 
надійними. Отримані результати створюють чіткий орієнтир як для економіс-
тів, так і для менеджерів з ризиків, який можна відтворити, перевірити та 
розширити під час розробки нових підходів з урахуванням витрат і побудови 
пояснюваних систем моніторингу банківського шахрайства.  
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Декларація про доступність даних 

Набір даних на рівні транзакцій, проаналізований у цьому дослідженні, 
отримано від банківської установи з дотриманням обмежень конфіденційнос-
ті. Хоча дані є анонімізованими та не містять інформації, що дозволяє іден-
тифікувати особу, первинні записи є власністю надавача даних і не можуть 
бути розміщені у відкритому репозиторії або включені до додатків статті. 
Щоб забезпечити прозорість та відтворюваність методології, в роботі наве-
дено повний перелік ознак, протокол оцінювання та результати ефективності 
моделей. З питань, що стосуються набору даних і дизайну дослідження, чи-
тачі можуть звертатися до відповідального автора (д-р. Спиридон Д. Ламп-
ропулос, spyridonlampropoulos@upatras.gr) з урахуванням чинних обмежень 
конфіденційності.  

 

 

Декларація про етичні міркування 

Набір даних надано в анонімізованій формі, проте він не містить пря-
мих ідентифікаторів. Використання цього набору даних обмежується тільки 
науково-дослідницькими цілями в межах вимог конфіденційності, і жодних 
спроб повторної ідентифікації окремих осіб або організацій не здійснювалося. 
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